skip to main content


Search for: All records

Creators/Authors contains: "Cañas, Caleb I."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Using simultaneous multi-filter observations during the transit of an exoplanet around a K dwarf star, we determine the temperature of a starspot through modeling the radius and position with wavelength-dependent spot contrasts. We model the spot using the starspot modeling program STarSPot (STSP), which uses the transiting companion as a knife-edge probe of the stellar surface. The contrast of the spot, i.e., the ratio of the integrated flux of a darker spot region to the star's photosphere, is calculated for a range of filters and spot temperatures. We demonstrate this technique using simulated data of HAT-P-11, a K dwarf (Teff= 4780 K) with well-modeled starspot properties for which we obtained simultaneous multi-filter transits using Las Cumbres Observatory's MuSCAT3 instrument on the 2m telescope at Haleakala Observatory, which allows for simultaneous, multi-filter, diffuser-assisted high-precision photometry. We determine the average (i.e., a combination of penumbra and umbra) spot temperature for HAT-P-11's spot complexes is 4500 K ± 100 K using this technique. We also find for our set of filters that comparing the SDSSgandifilters maximizes the signal difference caused by a large spot in the transit. Thus, this technique allows for the determination of the average spot temperature using only one spot occultation in transit and can provide simultaneous information on the spot temperature and spot properties.

     
    more » « less
  2. Theories of planet formation predict that low-mass stars should rarely host exoplanets with masses exceeding that of Neptune. We used radial velocity observations to detect a Neptune-mass exoplanet orbiting LHS 3154, a star that is nine times less massive than the Sun. The exoplanet’s orbital period is 3.7 days, and its minimum mass is 13.2 Earth masses. We used simulations to show that the high planet-to-star mass ratio (>3.5 × 10−4) is not an expected outcome of either the core accretion or gravitational instability theories of planet formation. In the core-accretion simulations, we show that close-in Neptune-mass planets are only formed if the dust mass of the protoplanetary disk is an order of magnitude greater than typically observed around very low-mass stars.

     
    more » « less
    Free, publicly-accessible full text available December 1, 2024
  3. Abstract We report the characterization of 28 low-mass (0.02 M ⊙ ≤ M 2 ≤ 0.25 M ⊙ ) companions to Kepler objects of interest (KOIs), eight of which were previously designated confirmed planets. These objects were detected as transiting companions to Sunlike stars (G and F dwarfs) by the Kepler mission and are confirmed as single-lined spectroscopic binaries in the current work using the northern multiplexed Apache Point Observatory Galactic Evolution Experiment near-infrared spectrograph (APOGEE-N) as part of the third and fourth Sloan Digital Sky Surveys. We have observed hundreds of KOIs using APOGEE-N and collected a total of 43,175 spectra with a median of 19 visits and a median baseline of ∼1.9 yr per target. We jointly model the Kepler photometry and APOGEE-N radial velocities to derive fundamental parameters for this subset of 28 transiting companions. The radii for most of these low-mass companions are overinflated (by ∼10%) when compared to theoretical models. Tidally locked M dwarfs on short-period orbits show the largest amount of inflation, but inflation is also evident for companions that are well separated from the host star. We demonstrate that APOGEE-N data provide reliable radial velocities when compared to precise high-resolution spectrographs that enable detailed characterization of individual systems and the inference of orbital elements for faint ( H > 12) KOIs. The data from the entire APOGEE-KOI program are public and present an opportunity to characterize an extensive subset of the binary population observed by Kepler. 
    more » « less
  4. A growing avenue for determining the prevalence of life beyond Earth is to search for “technosignatures” from extraterrestrial intelligences/agents. Technosignatures require significant energy to be visible across interstellar space and thus intentional signals might be concentrated in frequency, in time, or in space, to be found in mutually obvious places. Therefore, it could be advantageous to search for technosignatures in parts of parameter space that are mutually derivable to an observer on Earth and a distant transmitter. In this work, we used theL-band (1.1–1.9 GHz) receiver on the Robert C. Byrd Green Bank Telescope to perform the first technosignature search presynchronized with exoplanet transits, covering 12 Kepler systems. We used the Breakthrough Listen turboSETI pipeline to flag narrowband hits (∼3 Hz) using a maximum drift rate of ±614.4 Hz s−1and a signal-to-noise threshold of 5—the pipeline returned ∼3.4 × 105apparently-localized features. Visual inspection by a team of citizen scientists ruled out 99.6% of them. Further analysis found two signals of interest that warrant follow up, but no technosignatures. If the signals of interest are not redetected in future work, it will imply that the 12 targets in the search are not producing transit-aligned signals from 1.1 to 1.9 GHz with transmitter powers >60 times that of the former Arecibo radar. This search debuts a range of innovative technosignature techniques: citizen science vetting of potential signals of interest, a sensitivity-aware search out to extremely high drift rates, a more flexible method of analyzing on-off cadences, and an extremely low signal-to-noise threshold.

     
    more » « less
  5. Abstract TOI-1899 b is a rare exoplanet, a temperate warm Jupiter orbiting an M dwarf, first discovered by Cañas et al. (2020) from a TESS single-transit event. Using new radial velocities (RVs) from the precision RV spectrographs HPF and NEID, along with additional TESS photometry and ground-based transit follow-up, we are able to derive a much more precise orbital period of P = 29.090312 − 0.000035 + 0.000036 days, along with a radius of R p = 0.99 ± 0.03 R J . We have also improved the constraints on planet mass, M p = 0.67 ± 0.04 M J , and eccentricity, which is consistent with a circular orbit at 2 σ ( e = 0.044 − 0.027 + 0.029 ). TOI-1899 b occupies a unique region of parameter space as the coolest known ( T eq ≈ 380 K) Jovian-sized transiting planet around an M dwarf; we show that it has great potential to provide clues regarding the formation and migration mechanisms of these rare gas giants through transmission spectroscopy with JWST, as well as studies of tidal evolution. 
    more » « less
    Free, publicly-accessible full text available August 3, 2024
  6. Abstract We confirm the planetary nature of two gas giants discovered by TESS to transit M dwarfs with stellar companions at wide separations. TOI-3984 A ( J = 11.93) is an M4 dwarf hosting a short-period (4.353326 ± 0.000005 days) gas giant ( M p = 0.14 ± 0.03 M J and R p = 0.71 ± 0.02 R J ) with a wide-separation white dwarf companion. TOI-5293 A ( J = 12.47) is an M3 dwarf hosting a short-period (2.930289 ± 0.000004 days) gas giant ( M p = 0.54 ± 0.07 M J and R p = 1.06 ± 0.04 R J ) with a wide-separation M dwarf companion. We characterize both systems using a combination of ground- and space-based photometry, speckle imaging, and high-precision radial velocities from the Habitable-zone Planet Finder and NEID spectrographs. TOI-3984 A b ( T eq = 563 ± 15 K and TSM = 138 − 27 + 29 ) and TOI-5293 A b ( T eq = 675 − 30 + 42 K and TSM = 92 ± 14) are two of the coolest gas giants among the population of hot Jupiter–sized gas planets orbiting M dwarfs and are favorable targets for atmospheric characterization of temperate gas giants and 3D obliquity measurements to probe system architecture and migration scenarios. 
    more » « less
    Free, publicly-accessible full text available June 27, 2024
  7. Abstract

    Using both ground-based transit photometry and high-precision radial velocity spectroscopy, we confirm the planetary nature of TOI-3785 b. This transiting Neptune orbits an M2-Dwarf star with a period of ∼4.67 days, a planetary radius of 5.14 ± 0.16R, a mass of14.953.92+4.10M, and a density ofρ=0.610.17+0.18g cm−3. TOI-3785 b belongs to a rare population of Neptunes (4R<Rp< 7R) orbiting cooler, smaller M-dwarf host stars, of which only ∼10 have been confirmed. By increasing the number of confirmed planets, TOI-3785 b offers an opportunity to compare similar planets across varying planetary and stellar parameter spaces. Moreover, with a high-transmission spectroscopy metric of ∼150 combined with a relatively cool equilibrium temperature ofTeq= 582 ± 16 K and an inactive host star, TOI-3785 b is one of the more promising low-density M-dwarf Neptune targets for atmospheric follow up. Future investigation into atmospheric mass-loss rates of TOI-3785 b may yield new insights into the atmospheric evolution of these low-mass gas planets around M dwarfs.

     
    more » « less
  8. Abstract

    The Transiting Exoplanet Survey Satellite (TESS) mission detected a companion orbiting TIC 71268730, categorized it as a planet candidate, and designated the system TOI-5375. Our follow-up analysis using radial-velocity data from the Habitable-zone Planet Finder, photometric data from Red Buttes Observatory, and speckle imaging with NN-EXPLORE Exoplanet Stellar Speckle Imager determined that the companion is a very low mass star near the hydrogen-burning mass limit with a mass of 0.080 ± 0.002M(83.81 ± 2.10MJ), a radius of0.11140.0050+0.0048R(1.08410.04870.0467RJ), and brightness temperature of 2600 ± 70 K. This object orbits with a period of 1.721553 ± 0.000001 days around an early M dwarf star (0.62 ± 0.016M). TESS photometry shows regular variations in the host star’s TESS light curve, which we interpreted as an activity-induced variation of ∼2%, and used this variability to measure the host star’s stellar rotation period of1.97160.0083+0.0080days. The TOI-5375 system provides tight constraints on stellar models of low-mass stars at the hydrogen-burning limit and adds to the population in this important region.

     
    more » « less
  9. Abstract

    We perform an in-depth analysis of the recently validated TOI-3884 system, an M4-dwarf star with a transiting super-Neptune. Using high-precision light curves obtained with the 3.5 m Apache Point Observatory and radial velocity observations with the Habitable-zone Planet Finder, we derive a planetary mass of32.67.4+7.3Mand radius of 6.4 ± 0.2R. We detect a distinct starspot crossing event occurring just after ingress and spanning half the transit for every transit. We determine this spot feature to be wavelength dependent with the amplitude and duration evolving slightly over time. Best-fit starspot models show that TOI-3884b possesses a misaligned (λ= 75° ± 10°) orbit that crosses a giant pole spot. This system presents a rare opportunity for studies into the nature of both a misaligned super-Neptune and spot evolution on an active mid-M dwarf.

     
    more » « less
  10. Abstract We report the discovery of an M = 67 ± 2 M J brown dwarf transiting the early M dwarf TOI-2119 on an eccentric orbit ( e = 0.3362 ± 0.0005) at an orbital period of 7.200861 ± 0.000005 days. We confirm the brown dwarf nature of the transiting companion using a combination of ground-based and space-based photometry and high-precision velocimetry from the Habitable-zone Planet Finder. Detection of the secondary eclipse with TESS photometry enables a precise determination of the eccentricity and reveals the brown dwarf has a brightness temperature of 2100 ± 80 K, a value which is consistent with an early L dwarf. TOI-2119 is one of the most eccentric known brown dwarfs with P < 10 days, possibly due to the long circularization timescales for an object orbiting an M dwarf. We assess the prospects for determining the obliquity of the host star to probe formation scenarios and the possibility of additional companions in the system using Gaia EDR3 and our radial velocities. 
    more » « less